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Computer simulations of phase equilibrium for a fluid confined in a disordered porous structure

L. Sarkisov and P. A. Monson*
Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003

~Received 27 January 2000!

We present calculations of the phase diagrams of a Lennard-Jones 12-6 fluid confined in a disordered porous
structure made up of a dispersion of spherical particles, following up on an earlier work on the same system.
In particular we present additional calculations using more realizations of the matrix and we investigate the
applicability of the Gibbs-Duhem integration method to the calculation of phase equilibrium in these systems.
The essential picture of disordered and inhomogeneous coexisting vapor and liquid phases, which emerged in
the earlier work, is confirmed by the new calculations. However, a second phase transition associated with the
wetting of the porous material by the fluid is found to be more sensitive to variations of the matrix realization.
While for the present model this transition appears for particular realizations of the matrix, it does not seem to
survive averaging over realizations.

PACS number~s!: 61.20.Gy, 05.70.Fh, 64.60.Fr
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The behavior of fluids confined in disordered porous m
terials has been the subject of intense experimental@1,2# and
theoretical@3–5# interest over the last several years. A k
issue in developing an understanding of the behavior of s
systems is to determine the coupled roles of porous mat
disorder, confinement, and wetting phenomena.

One of the most promising theoretical approaches to th
systems has emerged from studies of molecular models
treat a disordered porous material, such as a silica gel,
collection of particles arranged in a predetermined mic
structure@7,8#. Such models are amenable to study by sta
tical mechanical theories using cluster expansion and rep
techniques@5,6# as well as by computer simulation@7–13#.

In recent work@9#, a Monte Carlo simulation study of
model of a fluid confined in a silica xerogel was presented
which the vapor-liquid coexistence was estimated using th
modynamic integration techniques. Several conclusi
emerged from that work. In addition to the suppression of
critical temperature associated with confinement, the sh
of the coexistence curve was found to reflect both the w
ting behavior of the fluid in the porous material and t
disorder. The results suggested an additional phase trans
that was associated with the ability of the fluid to wet t
more dense regions of the porous material~such a transition
is predicted for several model systems in the context of th
ries based on the replica Ornstein-Zernike equation@6#!. The
effect of disorder was assessed through the compariso
the adsorption isotherms calculated for a disordered confi
ration of solid particles, which was obtained from an eq
librium hard-sphere Monte Carlo simulation with those fo
fluid confined in an ordered array~fcc! of solid particles. The
purpose of this paper is to follow up on this earlier work w
additional investigations of some issues. In particular
make a wider study of the dependence of the results on
number of realizations of the porous matrix considered
we investigate the utility of the Gibbs-Duhem integrati
method@14# for determining the phase coexistence in the
systems more efficiently.
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In this work we use one of the two molecular mode
considered most extensively by Page and Monson@9#. We
model the solid as an array of spherical particles in a c
figuration~realization! taken from a Monte Carlo simulation
of an equilibrium hard-sphere system. We use the compo
sphere potential developed by Kaminsky and Monson@8# to
model the fluid-solid interactions, as adapted to stu
changes in the strength of the fluid-solid attractions@9#. For
the ratio of solid-fluid to fluid-fluid well depths we us
es f /e f f51.144. The fluid-fluid potential was truncated
2.5s f f and the solid-fluid potential at 8.08ss f . The solid
volume fraction was set to 0.386 and the size ratio betw
the matrix spheres and fluid molecules is 7.055:1. All t
calculations were carried out with the grand canonical Mo
Carlo technique@15# using 32 matrix particles and cell list
to reduce the computer time required for summing the in
actions in the system. The simulations were typically run
over 108 configurations with half of these used for equilibr
tion.

We have made calculations of phase diagrams using b
thermodynamic integration, as described in the work of P
and Monson@9#, and the Gibbs-Duhem integration techniq
@14#. The main drawback of thermodynamic integration
that it requires a complete adsorption/desorption isotherm
each temperature on the phase diagram. Gibbs-Duhem
gration@14# offers a potentially more efficient technique an
has been recently extended to the grand ensemble@16#. An-
other alternative has been considered by Alvarezet al. @12#
and Escobedo and de Pablo@13# who have used histogram
reweighting@17# in their recent studies. This method is n
so convenient in the present case because the very l
number of particles in the simulations at high density ma
the distribution functions in our grand ensemble simulatio
extremely narrow. In the Gibbs-Duhem integration meth
we propagate the chemical potential of the phases in co
istence along the saturation line by integrating the expres
@16#
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whereD in front of a quantity denotes a difference in th
property between the two phases and it is understood tha
derivative is being evaluated along the coexistence cu
This equation has the form of an ordinary differential equ
tion and can be integrated to givemcoex5 f (T). The choice
of integrator is influenced by the need to minimize the nu
ber of evaluations on the right-hand side of Eq.~1!, since this
requires a computer simulation of each coexisting phase.
this reason predictor-corrector techniques have an advan
over Runge-Kutta and some other more sophisticated m
ods. We use the third order Adams-Bashforth predict
corrector scheme@18#, which is a reasonable compromis
between simplicity and stability properties. For the start
of this scheme we need the first three values of (dm/dT) ~we
call this a start up set!, which requires an independent calc
lation of the coexistence properties using thermodynamic
tegration. Nevertheless, the Gibbs-Duhem integrat
method is still potentially much less time consuming th
thermodynamic integration.

We have tested the Gibbs-Duhem approach for two ca
the ordered fcc matrix and a single realization of the dis
dered matrix. In Fig. 1 we compare phase diagrams ca
lated via Gibbs-Duhem integration with those obtained
thermodynamic integration@11# for the fluid confined in the
fcc matrix. In this figure the bulk vapor-liquid coexistenc
curve, corrected for the effect of truncating the potential
also shown. This was calculated from the accurate equa
of state of Johnsonet al. @19#. For the Gibbs-Duhem integra
tion we used a temperature intervalDT* 50.025 ~where
T* 5kT/e f f) with the start up set,T* 50.6, 0.625, and 0.65
~for the highest temperature shown we restarted the Gib
Duhem integration withDT* 50.0125 and a start up se
T* 50.775, 0.7875 and 0.8 with the values at the mid
temperature obtained by interpolation!. We see that there is
very good agreement between the two methods for calcu
ing the phase coexistence. Notice that for this ordered ma

FIG. 1. TemperaturekT/e f f vs densityrs f f
3 /(12h) ~whereh is

the volume fraction of the hard-sphere matrix! coexistence curves
for 12-6 fluid confined in an ordered fcc matrix calculated via th
modynamic integration~open circles! and via Gibbs-Duhem inte
gration ~closed circles! compared with that of the bulk fluid~line!.
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the shape of the coexistence curve for the confined fluid
very similar to that of the bulk fluid although the critica
temperature is substantially lowered by confinement@11#.

In Fig. 2 the corresponding comparison is shown for t
disordered matrix using the same realization considered
the earlier work @9#. The implementation of the Gibbs
Duhem integration turned out to be more problematic in t
case. First of all we note that in the earlier results of Pa
and Monson@9# the phase diagram shows evidence of a s
ond phase transition at the low density side of the main
existence region. The coexistence points marked here w
estimated simply on the basis of the jumps in the adsorp
isotherms. To carry out the thermodynamic integration,
isotherms were integrated assuming that these jumps ma
the equilibrium points, an assumption that does not sign
cantly impact the accuracy of the calculated vapor-liquid
existence properties. Thus for the Gibbs-Duhem integra
we only attempted a calculation of the main coexistence
gion. As can be seen there is good agreement between
two calculation methods. However, to obtain this agreem
we had to restart the integration fromT* 50.70 with the start
up setT* 50.65, 0.675, and 0.70. At this point the pha
diagram obtained via thermodynamic integration shows
significant increase in the coexisting vapor density. T
Gibbs-Duhem integration would not have captured this eff
if we had not restarted the integration withT* 50.7 in the
start up set. Gibbs-Duhem integration@14,16# has been suc-
cessfully applied most often to systems with relative
smoothly changing coexistence densities as a function
temperature. A system like the present one requires a
tional tests of the phase behavior and a more sophistic
integration scheme with a smaller integration step, ther
reducing the effectiveness of the approach.

We now turn to the calculation of the phase diagram
eraged over several different realizations of the porous
terial. We used only thermodynamic integration in this c

-

FIG. 2. TemperaturekT/e f f vs densityrs f f
3 /(12h) phase dia-

grams for 12-6 fluid confined in a single realization of the dis
dered matrix calculated via thermodynamic integration~open
circles! and via Gibbs-Duhem integration~closed circles! compared
with that of a bulk fluid~line!.
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culation. Adsorption isotherms we calculated for ea
realization at every temperature point and then averaged
the realizations to produce a single average isotherm. T
isotherm was then used in the thermodynamic integra
procedure to calculate properties of the phases in coe
ence. Thermodynamic integration requires knowledge of
initial grand potential density for a condensed fluid state o
side the two-phase region. These values were estimated
ing a single matrix realization, since at high temperatu
and high densities the properties of the confined fluid
come relatively insensitive to changes in the matrix reali
tion.

The results for the phase diagram calculated in this w
are shown in Fig. 3 together with those for the single re
ization considered in the earlier work. Results at the low
two temperatures (T* 50.6 andT* 50.65) were averaged
over ten matrix realizations and those at the higher temp
tures were averaged over five realizations. Again the co
istence curve for the bulk fluid is also shown. There a
several things to notice about these results. First there is
good agreement for the liquid phase coexistence densitie
the confined fluid between the single realization results
the realization averaged results. Also, while there are so
quantitative differences, the vapor phase densities follo
similar trend in the two cases. A key feature here is the h
density of the vapor phase relative to that in the bulk. This
due to the presence of relative high density fluid in the low
porosity regions of the matrix. This point is well illustrate
by the computer graphics visualization in Fig. 14 of the s
ond paper by Page and Monson@9# and qualitatively similar
behavior is seen in visualizations for other matrix realiz
tions. In both the single realization case and the avera
results we observe a significant narrowness of the phase
gram toward higher densities and a shoulder in the va
densities in the temperature region betweenT* 50.65 and
T* 50.75. On the other hand, averaging over several ma
realizations eliminates the apparent second transition sh

FIG. 3. TemperaturekT/e f f vs densityrs f f
3 /(12h) phase dia-

grams for 12-6 fluid confined in a single realization of the dis
dered matrix~open circles! and for the multiple realizations~closed
circles, ten realizations forT* 50.6 and 0.65, and five realization
for the rest of the points! compared with that of a bulk fluid~line!.
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on the left side of the phase diagram for the single realiza
case. We have found steplike behavior in this region
some of the isotherms~as was the case for the two realiz
tions looked at by Page and Monson@9#! but not others and
there is some variation in the location of the step betwe
different realizations.

It is also of interest to compare the averaged adsorp
isotherms with those for a single realization and such a co
parison is shown forT* 50.60 in Fig. 4. It can be seen tha
the coexistence densities~connected with dashed lines! are
similar for both the multiple and single realization isotherm
At the same time it is clear that the second transition seen
the single realization isotherm~at aboutl/l050.0002) is
not present for the averaged isotherm. On the other ha
there is very close agreement of the high density branche
the isotherms in the two cases.

Given this new information it is worthwhile to reflec
briefly on the status of the second phase transition. The
dence for this transition in the single realization studied
Page and Monson@9# is quite convincing and has been co
firmed for the case of the repulsive matrix that was a
considered in that work by Escobedo and de Pablo@13# as
well as for single realizations of models with equal siz
solid and fluid particles@12,13#. The possibility of an addi-
tional phase transition arises because of the variation in
rosity in the system leading to regions of low porosity th
can span the sample. The second transition seen by Pag
Monson @9# is associated with the filling of such a samp
spanning region of low porosity. What appears to happen
the present model is that these sample spanning region
low porosity are fragile to variations in matrix realizatio
~whether this true for other size ratios is not clear!. Of course
a similar analysis applies to the main vapor-liquid transitio
The existence of this transition requires the presence o

-

FIG. 4. Adsorption/desorption isotherms of densityrs f f
3 vs rela-

tive activity l/l0 at kT/e f f50.6 for the 12-6 fluid confined in a
single realization of the disordered matrix~open circles and tri-
angles for adsorption and desorption, respectively! and averaged
over ten realizations~closed circles and triangles for adsorption a
desorption, respectively!. Dashed lines connect phases in coexi
ence for the single realization~right line! and for multiple realiza-
tions ~left line!. Herel0 is the activity at vapor-liquid coexistenc
for the bulk.
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region of high porosity, which is sample spanning. Our
sults indicate that for the present system the existence
such regions is robust to variations in the realization. H
teresis between high and low density branches in the ads
tion isotherms indicative of the vapor-liquid transition
seen for all the realizations we have studied. Moreover
varying the parameters in the model we can obtain hyster
loops that bear a remarkable resemblance to those see
perimentally@11#.

To summarize, we have presented some new result
the calculation of phase diagrams for a molecular model
fluid confined in a disordered porous material. We ha
tested the applicability of the Gibbs-Duhem integration te
nique to this problem. With this technique we have been a
to reproduce results obtained via thermodynamic integrat
However the method works best when the coexistence d
sities are relatively smoothly varying functions of tempe
ture ~a feature that makes the solutions of the differen
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equation more accurate for a given step size in temperatu!,
which is not always the case in these systems. Phase dia
calculations were presented based on adsorption isothe
averaged over several realizations of the porous struc
carried out via thermodynamic integration. Such features
the phase behavior as lowering of the critical temperatu
narrowness of the coexistence region, and its shift tow
higher densities that were seen in earlier results for a sin
realization@9# are preserved in the averaging over realiz
tions. However, the second transition seen for a single r
ization turned out to be much more realization sensitive a
it does not seem to survive the averaging over realizatio
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